TIP120/TIP121/TIP122
NPN Epitaxial Darlington Transistor

- Medium Power Linear Switching Applications
- Complementary to TIP125/126/127

Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Ratings</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{CBO}</td>
<td>Collector-Base Voltage : TIP120</td>
<td>60</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>: TIP121</td>
<td>80</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>: TIP122</td>
<td>100</td>
<td>V</td>
</tr>
<tr>
<td>V_{CEO}</td>
<td>Collector-Emitter Voltage : TIP120</td>
<td>60</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>: TIP121</td>
<td>80</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>: TIP122</td>
<td>100</td>
<td>V</td>
</tr>
<tr>
<td>V_{EBO}</td>
<td>Emitter-Base Voltage</td>
<td>5</td>
<td>V</td>
</tr>
<tr>
<td>I_C</td>
<td>Collector Current (DC)</td>
<td>5</td>
<td>A</td>
</tr>
<tr>
<td>I_{CP}</td>
<td>Collector Current (Pulse)</td>
<td>8</td>
<td>A</td>
</tr>
<tr>
<td>I_B</td>
<td>Base Current (DC)</td>
<td>120</td>
<td>mA</td>
</tr>
<tr>
<td>P_C</td>
<td>Collector Dissipation ($T_J=25°C$)</td>
<td>2</td>
<td>W</td>
</tr>
<tr>
<td></td>
<td>Collector Dissipation ($T_J=25°C$)</td>
<td>65</td>
<td>W</td>
</tr>
<tr>
<td>T_J</td>
<td>Junction Temperature</td>
<td>150</td>
<td>°C</td>
</tr>
<tr>
<td>T_{STG}</td>
<td>Storage Temperature</td>
<td>- 65 ~ 150</td>
<td>°C</td>
</tr>
</tbody>
</table>

* These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.
Electrical Characteristics\(^*\) \(T_a=25^\circ\text{C}\) unless otherwise noted

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Condition</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{CEO}(\text{sus}))</td>
<td>Collector-Emitter Sustaining Voltage</td>
<td>: TIP120</td>
<td>60</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>: TIP121</td>
<td>: TIP122</td>
<td>80</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>(I_C = 100\text{mA}, I_B = 0)</td>
<td></td>
<td>100</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>(I_{CEO})</td>
<td>Collector Cut-off Current</td>
<td>: TIP120</td>
<td></td>
<td>0.5</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td>: TIP121</td>
<td>: TIP122</td>
<td></td>
<td>0.5</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td>(V_{CE} = 30\text{V}, I_B = 0)</td>
<td></td>
<td></td>
<td>0.5</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td>(V_{CE} = 40\text{V}, I_B = 0)</td>
<td></td>
<td></td>
<td>0.5</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td>(V_{CE} = 50\text{V}, I_B = 0)</td>
<td></td>
<td></td>
<td>0.5</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>(I_{CBO})</td>
<td>Collector Cut-off Current</td>
<td>: TIP120</td>
<td></td>
<td>0.2</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td>: TIP121</td>
<td>: TIP122</td>
<td></td>
<td>0.2</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td>(V_{CB} = 60\text{V}, I_E = 0)</td>
<td></td>
<td></td>
<td>0.2</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td>(V_{CB} = 80\text{V}, I_E = 0)</td>
<td></td>
<td></td>
<td>0.2</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td>(V_{CB} = 100\text{V}, I_E = 0)</td>
<td></td>
<td></td>
<td>0.2</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>(I_{EBO})</td>
<td>Emitter Cut-off Current</td>
<td>(V_{BE} = 5\text{V}, I_C = 0)</td>
<td>2</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>(h_{FE})</td>
<td>* DC Current Gain</td>
<td>(V_{CE} = 3\text{V}, I_C = 0.5\text{A})</td>
<td>1000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(V_{CE} = 3\text{V}, I_C = 3\text{A})</td>
<td>1000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{CE(\text{sat})})</td>
<td>* Collector-Emitter Saturation Voltage</td>
<td>(I_C = 3\text{A}, I_B = 12\text{mA})</td>
<td>2.0</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>(I_C = 5\text{A}, I_B = 20\text{mA})</td>
<td></td>
<td>4.0</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>(V_{BE(\text{on})})</td>
<td>* Base-Emitter On Voltage</td>
<td>(V_{CE} = 3\text{V}, I_C = 3\text{A})</td>
<td>2.5</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>(C_{ob})</td>
<td>Output Capacitance</td>
<td>(V_{CB} = 10\text{V}, I_E = 0, f = 0.1\text{MHz})</td>
<td>200</td>
<td></td>
<td></td>
<td>pF</td>
</tr>
</tbody>
</table>

\(^*\) Pulse Test: Pulse Width \(\leq 300\text{\mu s}\), Duty Cycle \(\leq 2\%\)
Typical characteristics

Figure 1. DC current Gain

Figure 2. Base-Emitter Saturation Voltage
Collector-Emitter Saturation Voltage

Figure 3. Output and Input Capacitance
vs. Reverse Voltage

Figure 4. Safe Operating Area

Figure 5. Power Derating
Mechanical Dimensions

TO220

Δ9.40
6.38

Δ4.09
6.00

Δ0.36
2.54

A

10.67
9.85

4.83
3.60

"A1"

7" 3"

16.51
14.22

6.88
5.94

8.89
6.86

Δ13.40
12.19

(1.91)

1.78
1.14

1.02
0.38

0.61
0.33

0.36

Δ9.40
6.38

2.03

2.54

5.06

5" 3"

5" 3"

NOTES: UNLESS OTHERWISE SPECIFIED
A) REFERENCE JEDEC, TO-220, ISSUE K, VARIATION AB, DATED APRIL, 2002.
B) ALL DIMENSIONS ARE IN MILLIMETERS.
C) DIMENSIONING AND TOLERANCING PER ANSI Y14.5M-1998
D) LOCATION OF THE PIN HOLE MAY VARY (LOWER LEFT CORNER, LOWER CENTER AND CENTER OF THE PACKAGE)
E) DOES NOT COMPLY JEDC2 STANDARD VALUE.
F) "A1" DIMENSIONS REPRESENT LIKE BELOW:
 SINGLE GAUGE = 0.51 - 0.61
 DUAL GAUGE = 1.14 - 1.40
G) DRAWING FILE NAME: TO220B03REV6
TRADEMARKS
The following are registered and unregistered trademarks and service marks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx®
Build it Now™
CorePLUS™
CROSSVOLT™
CTL™
Current Transfer Logic™
EcoSPARK®
Fairchild®
Fairchild Semiconductor®
FACT Quiet Series™
FACT®
FAST®
FastvCore™
FPS™
FRFET®
Global Power Resource®
Green FPS™
Green FPS™ e-Series™
GTO™
i-Lo™
IntelliMAX™
ISOPLANAR™
MegaBuck™
MICROCOUPLER™
MicroFET™
MicroPak™
MillerDrive™
Motion-SPM™
OPTOLOGIC®
OPTOPLANAR®
PDP-SPM™
Power220®
Power247®
POWEREDGE®
Power-SPM™
PowerTrench®
Programmable Active Droop™
QFET®
QS™
QT Optoelectronics™
Quiet Series™
RapidConfigure™
SMART START™
SPM®
STEALTH™
SuperFET™
SuperSOT™-3
SuperSOT™-6
SuperSOT™-8
SyncFET™
The Power Franchise®
TinyBoost™
TinyBuck™
TinyLogic®
TINYOPTO™
TinyPower™
TinyPWM™
TinyWire™
µSerDes™
UHC®
UniFET™
VCX™

DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD’S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS
Definition of Terms

<table>
<thead>
<tr>
<th>Datasheet Identification</th>
<th>Product Status</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advance Information</td>
<td>Formative or In Design</td>
<td>This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.</td>
</tr>
<tr>
<td>Preliminary</td>
<td>First Production</td>
<td>This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.</td>
</tr>
<tr>
<td>No Identification Needed</td>
<td>Full Production</td>
<td>This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.</td>
</tr>
<tr>
<td>Obsolete</td>
<td>Not In Production</td>
<td>This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.</td>
</tr>
</tbody>
</table>