Mini-Flat package
AC Input type Photocoupler

● Features
1. Halogen Free.
2. Pb free and RoHS compliant.
3. AC inputs
4. Mini-flat package:
 compact 4 pin SOP with a 2.0mm profile
5. Subminiature type
 (The volume is smaller than that of our conventional DIP type by as far as 30%)
6. Isolation voltage between input and output (Viso : 3750vrms).
7. Agency Approvals
 • UL approved : No.E169586
 • VDE approved : No.40014684
 • FIMKO approved : EN 60065 No. FI 23147 A1
 EN 60950 No. FI 24583 A1
 • CQC approved : No. CQC04001010530

● Applications
1. Hybrid substrates that require high density mounting.
2. Programmable controllers.
1. OUTSIDE DIMENSION : UNIT (mm)

![Dimensions Diagram]

TOLERANCE : ±0.2mm

2. SCHEMATIC : TOP VIEW

![Schematic Diagram]

1. Anode, Cathode
2. Anode, Cathode
3. Emitter
4. Collector
Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Rating</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forward current</td>
<td>I_F</td>
<td>± 50</td>
<td>mA</td>
</tr>
<tr>
<td>Peak forward current</td>
<td>I_{FM}</td>
<td>± 1</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P</td>
<td>70</td>
<td>mW</td>
</tr>
<tr>
<td>Collector-emitter voltage</td>
<td>V_{CEO}</td>
<td>80</td>
<td>V</td>
</tr>
<tr>
<td>Emitter-collector voltage</td>
<td>V_{ECO}</td>
<td>5</td>
<td>V</td>
</tr>
<tr>
<td>Collector current</td>
<td>I_C</td>
<td>50</td>
<td>mA</td>
</tr>
<tr>
<td>Collector power dissipation</td>
<td>P_C</td>
<td>150</td>
<td>mW</td>
</tr>
<tr>
<td>Total power dissipation</td>
<td>P_{tot}</td>
<td>170</td>
<td>mW</td>
</tr>
<tr>
<td>Isolation voltage 1 minute</td>
<td>V_{iso}</td>
<td>3750</td>
<td>Vrms</td>
</tr>
<tr>
<td>Operating temperature</td>
<td>T_{opr}</td>
<td>-55 to +115</td>
<td>℃</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>T_{stg}</td>
<td>-55 to +125</td>
<td>℃</td>
</tr>
<tr>
<td>Soldering temperature 10 second</td>
<td>T_{sol}</td>
<td>260</td>
<td>℃</td>
</tr>
</tbody>
</table>

Electro-optical Characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>MIN.</th>
<th>TYP.</th>
<th>MAX.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forward voltage</td>
<td>V_F</td>
<td>$IF=\pm 20mA$</td>
<td>-</td>
<td>1.2</td>
<td>1.4</td>
<td>V</td>
</tr>
<tr>
<td>Terminal capacitance</td>
<td>C_T</td>
<td>$V=0, f=1kHz$</td>
<td>-</td>
<td>30</td>
<td>250</td>
<td>pF</td>
</tr>
<tr>
<td>Collector dark current</td>
<td>I_{CEO}</td>
<td>$V_{CEO}=20V, IF=0$</td>
<td>-</td>
<td>-</td>
<td>0.1</td>
<td>uA</td>
</tr>
<tr>
<td>Collector-emitter breakdown voltage</td>
<td>BV_{CEO}</td>
<td>$I_C=0.1mA, IF=0$</td>
<td>80</td>
<td>-</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td>Emitter-collector breakdown voltage</td>
<td>BV_{ECO}</td>
<td>$IF=100uA, IF=0$</td>
<td>5</td>
<td>-</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td>Transfer characteristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current transfer ratio</td>
<td>CTR</td>
<td>$IF=\pm 1mA, V_{CEO}=5V$</td>
<td>20</td>
<td>-</td>
<td>400</td>
<td>%</td>
</tr>
<tr>
<td>Collector-emitter saturation voltage</td>
<td>$V_{CE(sat)}$</td>
<td>$IF=\pm 20mA, I_{C}=1mA$</td>
<td>-</td>
<td>0.1</td>
<td>0.3</td>
<td>V</td>
</tr>
<tr>
<td>Isolation resistance</td>
<td>R_{iso}</td>
<td>$DC500V$ to 60%RH</td>
<td>$5x10^{10}$</td>
<td>10^{14}</td>
<td>-</td>
<td>ohm</td>
</tr>
<tr>
<td>Floating capacitance</td>
<td>C_l</td>
<td>$V=0, f=1MHz$</td>
<td>-</td>
<td>0.6</td>
<td>1.0</td>
<td>pF</td>
</tr>
<tr>
<td>Response time (Rise)</td>
<td>tr</td>
<td>$V_{ce}=2V, I_{c}=2mA, RL=100ohm$</td>
<td>-</td>
<td>4</td>
<td>18</td>
<td>us</td>
</tr>
<tr>
<td>Response time (Fall)</td>
<td>tf</td>
<td></td>
<td>-</td>
<td>3</td>
<td>18</td>
<td>us</td>
</tr>
</tbody>
</table>

Classification table of current transfer ratio

<table>
<thead>
<tr>
<th>CTR RANK</th>
<th>CTR(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KPC354NT0A</td>
<td>50 TO 150</td>
</tr>
<tr>
<td>KPC354NT0B</td>
<td>20 TO 400</td>
</tr>
</tbody>
</table>
PRODUCT SPECIFICATION

cosmo ELECTRONICS CORPORATION

Photocoupler:

KPC354NT

DATE: 11/29/2012

NO.61P04072

SHEET 4 OF 6

Fig.1 Forward Current vs. Ambient Temperature

![Graph of Forward Current vs. Ambient Temperature](image1)

Fig.2 Diode Power Dissipation vs. Ambient Temperature

![Graph of Diode Power Dissipation vs. Ambient Temperature](image2)

Fig.3 Collector Power Dissipation vs. Ambient Temperature

![Graph of Collector Power Dissipation vs. Ambient Temperature](image3)

Fig.4 Total Power Dissipation vs. Ambient Temperature

![Graph of Total Power Dissipation vs. Ambient Temperature](image4)

Fig.5 Peak Forward Current vs. Duty Ratio

![Graph of Peak Forward Current vs. Duty Ratio](image5)

Fig.6 Forward Current vs. Forward Voltage

![Graph of Forward Current vs. Forward Voltage](image6)

- **Forward current IF (mA)**
- **Diode power dissipation P (mW)**
- **Ambient temperature Ta(℃)**
- **Collector power dissipation Pc (mW)**
- **Total power dissipation Pc (mW)**
- **Ambient temperature Ta(℃)**
- **Peak forward current IFM (mA)**

- **Pulse width ≤ 100μs**
- **Ta=25℃**

- **Ta=75℃**
- **50℃**
- **25℃**
- **0℃**
- **-25℃**

- **Forward voltage VF (V)**
Fig. 7 Current Transfer Ratio vs. Forward Current

Fig. 8 Collector Current vs. Collector-Emitter Voltage

Fig. 9 Relative Current Transfer Ratio vs. Ambient Temperature

Fig. 10 Collector-Emitter Saturation Voltage vs. Ambient Temperature

Fig. 11 Collector Dark Current vs. Ambient Temperature

Fig. 12 Response Time vs. Load Resistance
NOTICE

The information contained in this document is a general product description and is subject to change without notice. Please contact cosmo in order to obtain the latest device data sheets before using any cosmo device. cosmo does not assume any responsibility for use of any circuitry described. No circuit patent licenses are implied. This publication is the property of cosmo. No part of this publication may be reproduced or copied in any form or by any means, or transferred to any third party without the prior written consent of cosmo Electronics Corporation.

The devices listed in this document are designed for general applications only in electronic equipment. No devices shall be deployed which require higher level of reliability such as:
-- Medical and other life support equipments.
-- Space application.
-- Telecommunication equipment (trunk lines).
-- Nuclear power control equipment.

Unless it received prior written approval from cosmo, cosmo takes no responsibility for damages arise form the improper usage of our device. Please contact cosmo for further information regarding the above notices.